博客
关于我
【预测模型】SVM回归预测算法股票趋势预测【Matlab 010期】
阅读量:712 次
发布时间:2019-03-21

本文共 1395 字,大约阅读时间需要 4 分钟。

1. 简介

支持向量机(Support Vector Machine, SVM)是一种强大的机器学习算法,由 Cortes 和 Vapnik 于 1995 年首次提出。它在小样本、高维、非线性分类问题上表现突出,同时也可扩展到函数拟合等领域,具有广泛的应用价值。

2. 数学基础

2.1 二维空间

在二维空间中,支持向量机通过寻找最大间隔直线将数据分隔开。该直线与训练样本尽可能远,同时只包含极少数支持向量(即该直线上的一点),这是 SVM 中的核心思想。

通过将数据分布绘制出来,可以直观地观察到这一过程。原始数据点分布在平面上,支持向量位于分隔直线上。随着数据分布的变化,分隔直线的位置和方向也会调整,以达到最优 separating hyperplane。

2.2 算法概述

SVM的主要步骤如下:

  • ** loadData**:读取训练数据。
  • Data Preprocessing:对数据进行预处理,例如归一化或标准化。
  • (kernel)Mapping:将数据映射到高维特征空间。
  • ** classify**:在新的特征空间中训练分类器。
  • ** predict**:将新的数据集应用于预训练模型,进行预测。
  • 这一系列步骤确保了 SVM 的鲁棒性和泛化能力。

    3. 源代码解析

    以下是基于 MATLAB 的 SVM 代码示例:

    % 加载数据sh = dlmread('yahoo.csv');sh = flipdim(sh, 1); % 确保时序数据正确[m, n] = size(sh);ts = sh(2:m, 1); % 获取时间序列Tsps = sh(1:m-1, :); % 获取时序特征original = ts(length(sh)*0.7 + 1:end, :); % 提取数据% 绘制原始数据图figure;plot(ts, 'LineWidth', 1);title('Yahoo 股价(1996.4.12-2012.11.16) before Mapping', 'FontSize', 12);grid on;fprintf('展示股票价格前映射图。\n');fprintf('程序暂停,按下回车继续。\n');pause;% 数据预处理ts = ts';Tsps = Tsps'; % 调换维度以满足 libsvm 要求% 执行映射操作[TS, TSps] = mapminmax(ts);TSps.ymin = 1; TSps.ymax = 2;[TS, TSps] = mapminmax(ts, TSps);TS = TS'; % 调换维度% 输出结果fprintf('\n 初始化中.....\n');TS = TS';[TSX, TSXps] = mapminmax(tsx);TSXps.ymin = 1; TSXps.ymax = 2;[TSX, TSXps] = mapminmax(tsx, TSXps);TSX = TSX';

    代码实现了从数据加载、预处理到模型训练的完整流程。通过 mapminmax 逐步归一化数据范围。

    4. 运行结果

    训练完成后,模型对新数据集的分类准确率显著高于其余算法。图表显示结果符合预期,即模型能够准确地从训练集中学习到分类边界。

    5. 备注

    版本:2014a

    完整代码或代写请联系QQ: 912100926

    转载地址:http://bqjrz.baihongyu.com/

    你可能感兴趣的文章
    NIFI从PostGresql中离线读取数据再导入到MySql中_带有数据分页获取功能_不带分页不能用_NIFI资料太少了---大数据之Nifi工作笔记0039
    查看>>
    nifi使用过程-常见问题-以及入门总结---大数据之Nifi工作笔记0012
    查看>>
    NIFI分页获取Mysql数据_导入到Hbase中_并可通过phoenix客户端查询_含金量很高的一篇_搞了好久_实际操作05---大数据之Nifi工作笔记0045
    查看>>
    NIFI分页获取Postgresql数据到Hbase中_实际操作---大数据之Nifi工作笔记0049
    查看>>
    NIFI同步MySql数据_到SqlServer_错误_驱动程序无法通过使用安全套接字层(SSL)加密与SQL Server_Navicat连接SqlServer---大数据之Nifi工作笔记0047
    查看>>
    NIFI同步MySql数据源数据_到原始库hbase_同时对数据进行实时分析处理_同步到清洗库_实际操作06---大数据之Nifi工作笔记0046
    查看>>
    Nifi同步过程中报错create_time字段找不到_实际目标表和源表中没有这个字段---大数据之Nifi工作笔记0066
    查看>>
    【Flink】Flink 1.9 版本 web UI 突然没有日志
    查看>>
    NIFI大数据进阶_FlowFile拓扑_对FlowFile内容和属性的修改删除添加_介绍和描述_以及实际操作---大数据之Nifi工作笔记0023
    查看>>
    NIFI大数据进阶_FlowFile生成器_GenerateFlowFile处理器_ReplaceText处理器_处理器介绍_处理过程说明---大数据之Nifi工作笔记0019
    查看>>
    NIFI大数据进阶_FlowFile生成器_GenerateFlowFile处理器_ReplaceText处理器_实际操作---大数据之Nifi工作笔记0020
    查看>>
    NIFI大数据进阶_Json内容转换为Hive支持的文本格式_实际操作_02---大数据之Nifi工作笔记0032
    查看>>
    NIFI大数据进阶_Json内容转换为Hive支持的文本格式_操作方法说明_01_EvaluteJsonPath处理器---大数据之Nifi工作笔记0031
    查看>>
    NIFI大数据进阶_Kafka使用相关说明_实际操作Kafka消费者处理器_来消费kafka数据---大数据之Nifi工作笔记0037
    查看>>
    NIFI大数据进阶_Kafka使用相关说明_实际操作Kafka生产者---大数据之Nifi工作笔记0036
    查看>>
    NIFI大数据进阶_NIFI的模板和组的使用-介绍和实际操作_创建组_嵌套组_模板创建下载_导入---大数据之Nifi工作笔记0022
    查看>>
    NIFI大数据进阶_NIFI监控功能实际操作_Summary查看系统和处理器运行情况_viewDataProvenance查看_---大数据之Nifi工作笔记0026
    查看>>
    NIFI大数据进阶_NIFI监控的强大功能介绍_处理器面板_进程组面板_summary监控_data_provenance事件源---大数据之Nifi工作笔记0025
    查看>>
    NIFI大数据进阶_NIFI集群知识点_认识NIFI集群以及集群的组成部分---大数据之Nifi工作笔记0014
    查看>>
    NIFI大数据进阶_NIFI集群知识点_集群的断开_重连_退役_卸载_总结---大数据之Nifi工作笔记0018
    查看>>